Calcium regulation + Hypercalcemia

<table>
<thead>
<tr>
<th>Parathyroid hormone (PTH)</th>
<th>Vitamin D</th>
<th>Calcitonin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase calcium (& Mg)</td>
<td>Increase calcium (& Mg)</td>
<td>Decrease calcium</td>
</tr>
<tr>
<td>Decrease phosphorous</td>
<td>Increase phosphorous</td>
<td>Decrease phosphorous</td>
</tr>
</tbody>
</table>

Parathyroid hormone
- **Made by:** Parathyroid gland chief cells
- **Regulated by:** Plasma concentrations of ionized calcium (Ca++)
- **Actions:**
 - GI: Promote intestinal absorption of calcium in presence of vitamin D
 - Kidney: Increase renal reabsorption of calcium, promote renal excretion of phosphorous, increase formation of active vitamin D by the kidney
 - Bone: Mobilize calcium and phosphorous from bone

Vitamin D
- **Sources:** Cholesterol via UV light to cholecalciferol (Vitamin D3); Vitamin D3 from diet; Vitamin D2 (ergocalciferol) from plants, Kidney activation to make calcitriol (active vitamin D) via cholecalciferol to liver (via 25-hydroxylase) to 25-HCC to kidneys (not horses) via 1-alpha-hydroxylase to active vitamin D (1,25-DHCC)
- **Regulated by:** Kidney formation of active vitamin D (increased by hypocalemia & hypophosphatemia); Hypocalcemia → increase PTH → increased formation of active vitamin D
- **Actions:**
 - GI: Promote intestinal absorption of calcium & phosphorous
 - Kidney: Promote renal reabsorption of calcium
 - Bone: Promote calcium & phosphorous release from bone

Calcitonin
- **Sources:** Thyroid parafollicular cells (C cells)
- **Regulated by:** Hypercalcemia
- **Actions:**
 - Kidney: Inhibit renal reabsorption of calcium (so increases renal excretion of calcium), Inhibit renal reabsorption of phosphorous (so increases its renal excretion)
 - Bone: Inhibit PTH-stimulated bone reabsorption of calcium

Contributors to blood levels of calcium

1. Total serum calcium (tCa) comprised of 3 major fractions:
 a. Free or ionized calcium (Ca++ or iCa) ~ 50% of total calcium
 b. Bound – anion-bound calcium ~ 40-45% of total calcium
 i. This is the part that is protein bound (mostly albumin), and influenced by plasma pH.
 c. Bound – non-protein anion-bound calcium ~ 5-10% of total calcium
2. Determinants of serum values:
 a. Age: higher total calcium in younger animals
 b. Albumin concentration: hypoalbuminemia can decrease total calcium (not iCa)
 c. GI absorption
 i. Requirements: vitamin D (induces mucosal epithelium to make Ca-binding proteins)
 ii. Mucosal integrity/GI function
 1. Horses: dependent on GI absorption of calcium as no renal activation
 2. Diffuse GI disease in small animals can result in hypocalemia, e.g. hypovitaminosis D, hypomagnesemia (pseudohypoparathyroidism)
 d. Bone: Reabsorption from bone vs. deposition into bone
 i. Impacted by dietary Ca:P, PTH, vitamin D, and calcitonin
 e. Kidneys
 i. Impacted by PTH, vitamin D, and calcitonin
 ii. Renal activation of vitamin D (non-equine)
 f. Calcium x phosphorous interaction
 i. Tissue mineralization with high Ca & P levels; Ca x P > 70, e.g. tissue, lungs
Hypercalcemia differentials

<table>
<thead>
<tr>
<th>Differential</th>
<th>Mechanism</th>
<th>Support</th>
</tr>
</thead>
</table>
| G Granulomatous inflammation | Macrophages specific to this type of inflammation produce vitamin D-like substance due to fungal infection, higher order bacterial infections; dogs primarily | • Chronic inflammation on CBC, hyperglobulinemia
• Geographic location
• Lymphadenopathy, pulmonary disease, and/or granulomatous disease/mass-like lesions
• Would expect decreased PTH |
| O Osteolytic disease | Osteolysis due to osteosarcoma (mild) or multiple myeloma (MM); dogs | • Lameness and/or lytic lesions
• Hyperglobulinemia (multiple myeloma)
• Increased ALP
• Expect decreased PTH |
| S Spurious or idiopathic | Idiopathic – cats (must rule out other causes) | • Rule out other causes
• Decreased PTH + low PTHrp |
| H Hyperparathyroidism (1°) | Parathyroid adenoma or carcinoma; Dogs primarily | • Elevated PTH or normal PTH (in face of hypercalcemia)
• Non-detectable PTHrp
• Hypophosphatemia (65%)
• Elevated ALP (40%)
• Variable USG (can be low due to nephrogenic DI from hypercalcemia)
• UTI (29%) |
| D Vitamin D intoxication | Ingestion of cholecalciferol rodenticide or plants (ergocalciferol) | • Acute GI signs, e.g. hematochezia and hematemesis, diarrhea +
• Acute renal failure
• Marked increases in calcium and phosphorous due to vitamin D ingestion
• Pulmonary distress (metastatic mineralization) |
| A Addison’s disease | Immune-mediated destruction of adrenal gland (~30% hypercalcemic)
• Lack of cortisol decreases renal excretion of calcium | • Hypocortisolism – Absence of stress leukogram, hypoglycemia, hypocholesterolemia, GI distress
• Hypoaldosteronism: Hyponatremia + hypochloridemia, dehydration, +/- azotemia, decreased USG |
| R Renal failure | Small animals - 10-15% with renal failure will have hypercalcemia | • Azotemia + low USG (isosthenuria often)
• Hyperphosphatemia |
| N Neoplasia | PTHrp production by neoplasm (lymphoma, anal sac carcinoma, + others, e.g. squamous cell carcinoma) | • Decreased PTH
• Increased PTHrp
• Anal sac mass, lymphadenopathy, mass lesion (confirm with cytology +/- biopsy) |